Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 95: 105755, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38061605

RESUMO

The Caucasian viper Macrovipera lebetina obtusa (MLO) is one of the most prevalent and venomous snakes in the Caucasus and the surrounding regions, yet the effects of MLO venom on cardiac function remain largely unknown. We examined the influence of MLO venom (crude and with inhibited metalloproteinases and phospholipase A2) on attachment and metabolic activity of rat neonatal cardiomyocytes (CM) and nonmyocytes (nCM), assessed at 1 and 24 h. After exposing both CM and nCM to varying concentrations of MLO venom, we observed immediate cytotoxic effects at a concentration of 100 µg/ml, causing detachment from the culture substrate. At lower MLO venom concentrations both cell types detached in a dose-dependent manner. Inhibition of MLO venom metalloproteinases significantly improved CM and nCM attachment after 1-hour exposure. At 24-hour exposure to metalloproteinases inhibited venom statistically significant enhancement was observed only in nCM attachment. However, metabolic activity of CM and nCM did not decrease upon exposure to the lower dose of the venom. Moreover, we demonstrated that metalloproteinases and phospholipases A2 are not the components of the MLO venom that change metabolic activity of both CM and nCM. These results provide a valuable platform to study the impact of MLO venom on prey cardiac function. They also call for further exploration of individual venom components for pharmaceutical purposes.


Assuntos
Viperidae , Ratos , Animais , Viperidae/metabolismo , Venenos de Víboras/toxicidade , Miócitos Cardíacos , Fosfolipases A2/metabolismo , Metaloproteases
2.
Mol Metab ; 79: 101858, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141847

RESUMO

OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD) affects 1 in 3 adults and contributes to advanced liver injury and cardiometabolic disease. While recent evidence points to involvement of the brain in NAFLD, the downstream neural circuits and neuronal molecular mechanisms involved in this response, remain unclear. Here, we investigated the role of a unique forebrain-hypothalamic circuit in NAFLD. METHODS: Chemogenetic activation and inhibition of circumventricular subfornical organ (SFO) neurons that project to the paraventricular nucleus of the hypothalamus (PVN; SFO→PVN) in mice were used to study the role of SFO→PVN signaling in NAFLD. Novel scanning electron microscopy techniques, histological approaches, molecular biology techniques, and viral methodologies were further used to delineate the role of endoplasmic reticulum (ER) stress within this circuit in driving NAFLD. RESULTS: In lean animals, acute chemogenetic activation of SFO→PVN neurons was sufficient to cause hepatic steatosis in a liver sympathetic nerve dependent manner. Conversely, inhibition of this forebrain-hypothalamic circuit rescued obesity-associated NAFLD. Furthermore, dietary NAFLD is associated with marked ER ultrastructural alterations and ER stress in the PVN, which was blunted following reductions in excitatory signaling from the SFO. Finally, selective inhibition of PVN ER stress reduced hepatic steatosis during obesity. CONCLUSIONS: Collectively, these findings characterize a previously unrecognized forebrain-hypothalamic-ER stress circuit that is involved in hepatic steatosis, which may point to future therapeutic strategies for NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Obesidade , Núcleo Hipotalâmico Paraventricular/fisiologia , Sistema Nervoso Simpático
3.
J Neurophysiol ; 130(2): 345-352, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37435651

RESUMO

Dysregulation in the paraventricular nucleus of the hypothalamus (PVN) is associated with a variety of diseases including those related to obesity. Although most investigations have focused on molecular changes, structural alterations in PVN neurons can reveal underlying functional disruptions. Although electron microscopy (EM) can provide nanometer resolution of brain structures, an inherent limitation of traditional transmission EM is the single field of view nature of data collection. To overcome this, we used large-field-of-view high-resolution backscatter scanning electron microscopy (bSEM) of the PVN. By stitching high-resolution bSEM images, taken from normal chow and high-fat diet mice, we achieved interactive, zoomable maps that allow for low-magnification screening of the entire PVN and high-resolution analyses of ultrastructure at the level of the smallest cellular organelle. Using this approach, quantitative analysis across the PVN revealed marked electron-dense regions within neuronal nucleoplasm following high-fat diet feeding, with an increase in kurtosis, indicative of a shift away from a normal distribution. Furthermore, measures of skewness indicated a shift toward darker clustered electron-dense regions, potentially indicative of heterochromatin clusters. We further demonstrate the utility to map out healthy and altered neurons throughout the PVN and the ability to remotely perform bSEM imaging in situations that require social distancing, such as the COVID-19 pandemic. Collectively, these findings present an approach that allows for the precise placement of PVN cells within an overall structural and functional map of the PVN. Moreover, they suggest that obesity may disrupt PVN neuronal chromatin structure.NEW & NOTEWORTHY Paraventricular nucleus of the hypothalamus (PVN) alterations are linked to obesity-related conditions, but limited knowledge exists about neuroanatomical changes in this region. A large-field-of-view backscatter scanning electron microscopy (bSEM) method was used, which allowed the identification of up to 40 PVN neurons in individual samples. During obesity in mice, bSEM revealed changes in PVN neuronal nucleoplasm, possibly indicating chromatin clustering. This microscopy advancement offers valuable insights into neuroanatomy in both healthy and disease conditions.


Assuntos
COVID-19 , Núcleo Hipotalâmico Paraventricular , Camundongos , Animais , Humanos , Microscopia Eletrônica de Varredura , Pandemias , Hipotálamo , Obesidade , Dieta Hiperlipídica/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...